Electricity & Magnetism Sem-2 (Hons)

Semester II

CC- III: ELECTRICITY AND MAGNETISM

(Credits: Theory-04, Practicals-02)

F.M. = 75 (Theory - 40, Practical – 20, Internal Assessment – 15)

Internal Assessment [Class Attendance (Theory) – 05, Theory (Class Test/ Assignment/ Seminar) – 05, Practical (Sessional Viva-voce) - 05]

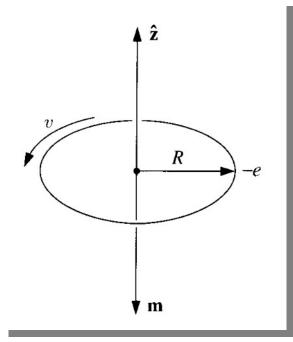

Theory: 60 Lectures

Somenath Jalal
Hooghly Women's College
somenath.jalal@gmail.com

Syllabus

Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity(H). Magnetic Susceptibility and permeability.Relation between B, H, M. Ferromagnetism.B-H curve and hysteresis. (4 Lectures)

 $\mathbf{M} \equiv magnetic\ dipole\ moment\ per\ unit\ volume.$



 $\mathbf{M} \equiv magnetic \ dipole \ moment \ per \ unit \ volume.$

Concept of bound current:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{\lambda}}}{r^2}.$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \left[\mathbf{M}(\mathbf{r}') \times \left(\nabla' \frac{1}{\imath} \right) \right] d\tau'.$$

 $\mathbf{M} \equiv magnetic \ dipole \ moment \ per \ unit \ volume.$

Concept of bound current:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \left[\mathbf{M}(\mathbf{r}') \times \left(\nabla' \frac{1}{\imath} \right) \right] d\tau'.$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{1}{\imath} [\nabla' \times \mathbf{M}(\mathbf{r}')] d\tau' + \frac{\mu_0}{4\pi} \oint \frac{1}{\imath} [\mathbf{M}(\mathbf{r}') \times d\mathbf{a}'].$$

$$\boxed{\mathbf{J}_b = \nabla \times \mathbf{M},}$$

$$\mathbf{K}_b = \mathbf{M} \times \hat{\mathbf{n}},$$

 $\mathbf{M} \equiv magnetic\ dipole\ moment\ per\ unit\ volume.$

$$\mathbf{J}_b = \nabla \times \mathbf{M},$$

$$\nabla \cdot \mathbf{J}_b = 0.$$

the divergence of a curl is always zero.

Magnetic Intensity H

Current density = Bound Current + Free current

$$\mathbf{J} = \mathbf{J}_b + \mathbf{J}_f.$$

$$\frac{1}{\mu_0}(\nabla \times \mathbf{B}) = \mathbf{J} = \mathbf{J}_f + \mathbf{J}_b = \mathbf{J}_f + (\nabla \times \mathbf{M}),$$

$$\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} - \mathbf{M}\right) = \mathbf{J}_f.$$

Magnetic Intensity H

$$\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} - \mathbf{M}\right) = \mathbf{J}_f.$$

This is the relation between **B**, **H** and **M**

$$\mathbf{H} \equiv \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}.$$

Ampere's Circuital Law

$$\oint \mathbf{H} \cdot d\mathbf{l} = I_{f_{\text{enc}}},$$

$$\mathbf{M}=\chi_m\mathbf{H}.$$

Typical values are around 10^{-5}

The constant of proportionality χ_m is called the magnetic susceptibility;

Magnetic properties of materials:

- Revise the following topics from any text book: (NCERT Class 12)
- Magnetic intensity, magnetic induction, permeability, magnetic susceptibility.
- Brief introduction of dia-, para- and ferro-magnetic materials.

Magnetic properties of materials:

Important to know for future experimental physicists:

Material	Susceptibility	Material	Susceptibility
Diamagnetic:	-	Paramagnetic:	
Bismuth	-1.6×10^{-4}	Oxygen	1.9×10^{-6}
Gold	-3.4×10^{-5}	Sodium	8.5×10^{-6}
Silver	-2.4×10^{-5}	Aluminum	2.1×10^{-5}
Copper	-9.7×10^{-6}	Tungsten	7.8×10^{-5}
Water	-9.0×10^{-6}	Platinum	2.8×10^{-4}
Carbon Dioxide	-1.2×10^{-8}	Liquid Oxygen (-200° C)	3.9×10^{-3}
Hydrogen	-2.2×10^{-9}	Gadolinium	4.8×10^{-1}

dia-, para- and ferro-

Diamagnetic	Paramagnetic	Ferromagnetic
Atoms do not have intrinsic magnetic moment.	Atoms have intrinsic magnetic moment.	Atoms have intrinsic magnetic moment.
On application of external magnetic field (B) magnetisation m grows and it is opposite to B	When external magnetic field (B) applied, the magnetisation <i>m</i> align along B , and when removed, net magnetisation is zero.	When external magnetic field (B) applied, the magnetisation m align along B and when ext. field is removed, the magnetisation persists.
U = - m.B U is +ve	U = - m.B U is -ve	U = - m.B U is -ve
Water, Superconductor, Cu, Pb, NaCl, S	Al, Na, CuCl ₂	Fe, Co, Ni

Important formula..

This is example of linear media, where M and H is linearly proportional..

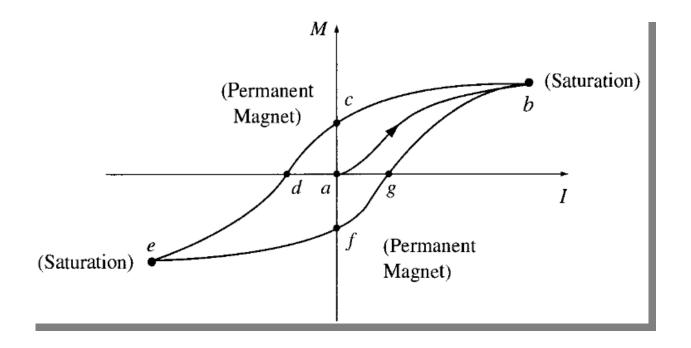
$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) = \mu_0(1 + \chi_m)\mathbf{H},$$

$$\mathbf{B} = \mu \mathbf{H},$$

$$\mu \equiv \mu_0(1+\chi_m).$$

Ferromagnetism and B-H loop

This is example of non-linear media, where \mathbf{M} and \mathbf{H} is not linearly proportional..


$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) = \mu_0(1 + \chi_m)\mathbf{H},$$

$$\mathbf{B} = \mu\mathbf{H},$$

$$\mu \equiv \mu_0(1 + \chi_m).$$

Ferromagnetism and B-H loop

This is example of non-linear media, where \mathbf{M} and \mathbf{H} is not linearly proportional..

There are lots of questions you should ask from this figure.. please attend class

Thank you